已知大气湍流的图像恢复算法对设计比模糊或噪声等传统湍流更具挑战性,因为湍流引起的失真是空间变化的模糊,几何变形,传感器噪声的纠缠。现有的基于CNN的恢复方法建立在具有静态重量的卷积内核上,不足以处理空间动态的大气湍流效果。为了解决这个问题,在本文中,我们提出了一个以物理启发的变压器模型,用于通过大气湍流进行成像。提出的网络利用变压器块的功率共同提取动态湍流失真图并恢复无湍流图像。此外,我们认识到缺乏全面的数据集,我们收集并介绍了两个新的现实世界湍流数据集,这些数据集允许使用经典目标指标(例如PSNR和SSIM)进行评估,并使用文本识别精度进行了新的任务驱动指标。实际测试集和所有相关代码都将公开可用。
translated by 谷歌翻译
由于大气湍流的扭曲而恢复图像是一个长期存在的问题,这是由于变形的空间变化,图像形成过程的非线性以及训练和测试数据的稀缺性。现有方法通常在失真模型上具有强大的统计假设,在许多情况下,由于没有概括,因此在现实世界中的性能有限。为了克服挑战,本文提出了一种端到端物理驱动的方法,该方法有效,可以推广到现实世界的湍流。在数据合成方面,我们通过通过宽sense式的平稳性近似随机场来显着增加SOTA湍流模拟器可以处理的图像分辨率。新的数据合成过程使大规模的多级湍流和训练的地面真相对产生。在网络设计方面,我们提出了湍流缓解变压器(TMT),这是一个两级U-NET形状的多帧恢复网络,该网络具有Noval有效的自发机制,称为暂时通道关节关注(TCJA)。我们还引入了一种新的培训方案,该方案由新的模拟器启用,并设计新的变压器单元以减少内存消耗。在静态场景和动态场景上的实验结果是有希望的,包括各种真实的湍流场景。
translated by 谷歌翻译
3D点云通常由一个或多个观点处由传感器获取的深度测量构成。测量值遭受量化和噪声损坏。为了提高质量,以前的作品在将不完美深度数据投射到3D空间之后,将点云\ Textit {a postiriori}代名。相反,在合成3D点云之前,我们在感测图像\ Texit {a先验}上直接增强深度测量。通过增强物理传感过程附近,在后续处理步骤模糊测量误差之前,我们将我们的优化定制到我们的深度形成模型。具体而言,我们将深度形成为信号相关噪声添加和非均匀日志量化的组合过程。使用来自实际深度传感器的收集的经验数据验证设计的模型(配有参数)。为了在深度图像中增强每个像素行,我们首先通过特征图学习将可用行像素之间的视图帧内相似性编码为边缘权重。接下来我们通过观点映射和稀疏线性插值建立与另一个整流的深度图像的视图间相似性。这导致最大的后验(MAP)图滤波物镜,其凸显和可微分。我们使用加速梯度下降(AGD)有效地优化目标,其中最佳步长通过Gershgorin圆定理(GCT)近似。实验表明,我们的方法在两个既定点云质量指标中显着优于最近的近期云去噪方案和最先进的图像去噪方案。
translated by 谷歌翻译
图表信号处理是一种普遍存在的任务,如传感器,社会,运输和大脑网络,点云处理和图形神经网络等许多应用程序。通常,图形信号在感测过程中损坏,从而需要恢复。在本文中,我们提出了一种基于深度算法展开(DAU)的图形信号恢复方法。首先,我们通过展开乘法器(ADMM)的交替方向方法的迭代来呈现曲线图信号置位。然后,我们建议通过展开即插即用ADMM(PNP-ADMM)的迭代进行线性劣化的一般恢复方法。在第二种方法中,将展开的基于ADMM的Denoiser纳入子模块,导致嵌套的DAU结构。所提出的去噪/恢复方法中的参数以端到端的方式进行培训。我们的方法是可解释的,并保持参数的数量,因为我们只调谐与图形的正则化参数。我们克服了现有曲线图信号恢复方法中的两个主要挑战:1)由于固定参数,凸优化算法的有限性能由于通常手动确定的固定参数。 2)图形神经网络的大量参数导致训练难度。对曲线信号去噪和插值的几个实验是对合成和真实世界的数据进行的。所提出的方法在两个任务中的根均方误差方面,在几种现有技术上显示了性能改进。
translated by 谷歌翻译
肾脏是人体的重要器官。它保持体内平衡并通过尿液去除有害物质。肾细胞癌(RCC)是肾癌最常见的形式。大约90%的肾脏癌归因于RCC。最有害的RCC类型是清晰的细胞肾细胞癌(CCRCC),占所有RCC病例的80%。需要早期和准确的CCRCC检测,以防止其他器官进一步扩散该疾病。在本文中,进行了详细的实验,以确定可以在不同阶段诊断CCRCC的重要特征。 CCRCC数据集从癌症基因组图集(TCGA)获得。考虑了从8种流行特征选择方法获得的特征顺序的新型相互信息和集合的特征排名方法。通过使用2个不同的分类器(ANN和SVM)获得的总体分类精度来评估所提出方法的性能。实验结果表明,所提出的特征排名方法能够获得更高的精度(分别使用SVM和NN分别使用SVM和NN),与现有工作相比,使用SVM和NN分别使用SVM和NN进行分类。还要注意的是,在现有TNM系统(由AJCC和UICC提出的)提到的3个区分特征中,我们提出的方法能够选择其中两个(肿瘤的大小,转移状态)作为顶部 - 大多数。这确立了我们提出的方法的功效。
translated by 谷歌翻译
这项研究受到人类行为的启发,提议使用探测策略,并将其整合到遍布性分析框架中,以解决未知的粗糙地形上的安全导航。我们的框架将可折叠信息整合到我们现有的遍历性分析中,因为仅视力和几何信息可能会被不可预测的非刚性地形(例如柔软的土壤,灌木丛或水坑)误导。通过新的遍历性分析框架,我们的机器人对不可预测的地形进行了更全面的评估,这对于其在室外环境中的安全至关重要。该管道首先使用RGB-D摄像头确定地形的几何和语义性能,并在可疑地形上探测位置。使用力传感器对这些区域进行探测,以确定机器人在其上面时崩溃的风险。该风险被称为可折叠度度量,该指标估计了不可预测的区域的地面可折叠性。此后,将可折叠性度量以及几何和语义空间数据结合在一起,并分析以产生全局和局部穿术网格图。这些遍历性网格地图告诉机器人是否可以安全地跨越地图的不同区域。然后使用网格图来生成机器人的最佳路径,以安全地导航其目标。在模拟和现实世界实验中,我们的方法已在四足动物的机器人上成功验证。
translated by 谷歌翻译
Majorana示威者是一项领先的实验,寻找具有高纯净锗探测器(HPGE)的中性s中性双β衰变。机器学习提供了一种最大化这些检测器提供的信息量的新方法,但是与传统分析相比,数据驱动的性质使其不可解释。一项可解释性研究揭示了机器的决策逻辑,使我们能够从机器中学习以反馈传统分析。在这项工作中,我们介绍了Majorana演示者数据的第一个机器学习分析。这也是对任何锗探测器实验的第一个可解释的机器学习分析。训练了两个梯度增强的决策树模型,以从数据中学习,并进行了基于游戏理论的模型可解释性研究,以了解分类功率的起源。通过从数据中学习,该分析识别重建参数之间的相关性,以进一步增强背景拒绝性能。通过从机器中学习,该分析揭示了新的背景类别对相互利用的标准Majorana分析的重要性。该模型与下一代锗探测器实验(如传说)高度兼容,因为它可以同时在大量探测器上进行训练。
translated by 谷歌翻译
在过去的25年中,我们目睹了机器学习在编译器领域的广泛应用。选择和相位订购问题。但是,有限的作品已在最先进的编译器(即LLVM)上游,以将前者无缝集成到编译器的优化管道中,以便由用户容易部署。 MLGO是此类项目的第一个项目之一,它仅努力使用强化学习使用基于ML的INLINER来减少二进制的代码大小。本文介绍了mlgoperf;第一个端到端框架,能够使用LLVM的ML Inliner优化性能。它采用二级ML模型来生成用于训练重新定位的增强学习代理的奖励,该辅助剂以前由MLGO用作主要模型。它通过预测分析功能的函数的速度加速来做到这一点,并为主要模型提供快速训练框架,否则将是不切实际的。实验结果表明,MLGOPERF在LLVM在O3时的优化方面的优化分别为SPEC CPU2006和CBENCH基准分别获得了1.8%和2.2%。此外,提出的方法为我们的基准测试带来了自动点守则区域的26%,可以将其转化为额外的3.7%速度值。
translated by 谷歌翻译
手工和小规模的黄金开采(ASGM)是许多家庭的重要收入来源,但它可以产生巨大的社会和环境影响,尤其是在发展中国家的雨林中。Sentinel-2卫星收集了多光谱图像,可用于检测水位和质量的变化,这表明采矿地点位置。这项工作着重于对秘鲁亚马逊雨林中ASGM活动的认可。我们根据支持向量机(SVM)测试了几个半监督分类器,以检测Madre de Dios地区从2019年到2021年的水体变化,这是ASGM活动的全球热点之一。实验表明,基于SVM的模型可以实现RGB的合理性能(使用Cohen的$ \ kappa $ 0.49)和6通道图像(使用Cohen的$ \ kappa $ 0.71),具有非常有限的注释。还分析了合并实验室色彩空间的功效。
translated by 谷歌翻译
正如人类和动物在自然世界中学习的那样,它们会遇到远非统一的实体,情况和事件的分布。通常,经常遇到相对较小的经历,而许多重要的体验很少发生。现实的高度紧密,重尾的本质构成了人类和动物通过不断发展的专业记忆系统所面临的特殊学习挑战。相比之下,大多数流行的RL环境和基准涉及属性,对象,情况或任务的大致变化。 RL算法将如何在环境特征分布的世界(如我们的)中表现出较不统一的分布?为了探讨这个问题,我们开发了三个互补的RL环境,在这些环境中,代理商的经验根据Zipfian(离散幂定律)分布而变化。在这些基准上,我们发现标准的深入RL体系结构和算法获得了对常见情况和任务的有用知识,但无法充分了解稀有的情况。为了更好地了解这一失败,我们探讨了如何调整当前方法的不同方面,以帮助提高罕见事件的性能,并表明RL目标功能,代理商的记忆系统和自我监督的学习目标都可以影响代理商的能力从罕见的体验中学习。这些结果共同表明,从偏斜的经验中进行强大的学习是应用模拟或实验室以外的深度RL方法的关键挑战,而我们的Zipfian环境为衡量未来的进步朝着这一目标提供了基础。
translated by 谷歌翻译